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Congruential pseudorandom number generators have been used for a long time in 
Monte Carlo sampling of initial values for trajectory calculations in chemical reactive 
scattering studies. Difficulties with standard generators of the type normally used for such 
work (multiplicative generators with modulus 2” or lo”), i.e., a nonrandom behavior of the 
sampled distributions, are reported here. This behavior is attributed to the existence of a 
long-range structure not previously well known in the number sequences from such generat- 
ors. This structure is thoroughly investigated for one generator with modulus 108 previously 
well tested and is shown to give much too smooth or much too rough distributions in 
frequency tests, depending on the resolution in the random numbers and the fraction of a 
period used in the test. For a resolution of lo-” only a fraction of the period considerably 
less than lo-” should be used (e.g., for n = 2, less than one-hundredth of the period). It 
is concluded, that generators with modulus a prime will be preferable in this respect, and 
that the methods often used to break up the short-range correlation (shuffling, etc.) are 
not efficient for destroying this long-range structure. 

1. INTRODUCTION 

The choice of a random number generator for Monte Carlo trajectory calculations 
of reactive collisions between molecules is, unfortunately, not simple. The generator 
supplied by IBM in the SSP library (RANDU) was the one most easily accessible, 
when a study of absolute complex formation cross sections in alkali-alkali halide 
reactive scattering [l] was started. RANDU is of the congruential multiplicative type, 

A Ic+l = XAI, mod h4, k = 0, l,..., (1) 

where X (the multiplier), M (the modulus) and Al, are all integer numbers. ABfl is an 
integer pseudorandom number, 0 < A,,, < M. Similar generators have been used 
for a long time [2-81, also in Monte Carlo trajectory calculations [g-12], and have 
been tested thoroughly with many types of tests [2-71. Several monographs on the 
subject exist [2-4]. 

Since the final results of our trajectory studies on absolute cross sections [l] were 
to be tested by statistical methods for deviations from the theoretically expected 
behavior, the sampied distributions of the initial values also had to be tested (by x2 
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tests). Very poor test results were found when RANDU was used, far outside what 
could be tolerated. Tests directly on the generator also showed poor behavior. 

In Monte Carlo trajectory work, congruential multiplicative and “mixed” [2-41 
generators are used almost exclusively. Thus, it was considered very important to 
investigate whether other generators of this type behaved poorly during our tests, and 
to attempt to find the reasons for the poor test results. RANDU was not considered a 
good candidate for closer investigation, since no previous trajectory work using 
RANDU was known. It seemed reasonable that for one certain application (i.e., one 
special “test”) one special type of generator would give the best performance, in this 
case probably the congruential type, as judged from its extensive use. Thus another 
congruential generator, more often used in trajectory work and possibly also well 
tested, was sought. 

A nonexhaustive literature study of Monte Carlo trajectory studies showed that in 
most cases no explicit description of the generators used was given, but only incon- 
clusive references. In some cases the ultimate sources appeared to be one of Refs. 
[6, 11, 121. Since only Ref. [6] contained real tests, e.g., frequency tests, one of the 
“satisfactory” generators from Ref. [6] (A, = 1, X = 1003, M = IO*; Generator 1 
(Table I)) was chosen for continued work. 

This generator was found to be better than RANDU, but the distributions were 
still far from sufficiently random for our testing purposes (by simple x2 tests). A study 
of the generator and the sampling procedure was then started. It was found that the 
period of the sequence was so short (5 x 106) that more than one period was used. 
Even after a strong reduction of the length of the number sequence used, a distinct 
nonrandom behavior remained in the tests. The results of these tests, x2 tests of the 
distributions of frequency tests, are collected in Table I, where a generator with a 
much longer period (Generator 2; M = 2 31 -1, a prime, X = 75 and A, = 2147483 
[7]) is included for comparison. See also the Appendix. 

Detailed studies of the generator revealed an unexpected structure in the number 
sequence, in the form of a steady repetition of differences between numbers located far 
apart in the sequence. Frequency tests applied to different fractions of the loop and 
with several levels of resolution in the numbers have given very poor test results 
(probability less than 0.0005 for randomness in 4 tests out of 11). The relation between 
these test results and the fine structure has been clarified. The results indicate that 
most common congruential generators may give nonrandom results outside the 
acceptable limit for distribution sampling, if applied without consideration of the 
limits on resolution and fraction of the loop to be used. These limitations on the use 
of RNGs have, as far as we know, not been described previously. 

In an early report, a fine structure similar to the one discussed here was found in 
“mixed” generators with M = 2” [13]. It has also been observed [14, 151 that the 
digits in numbers formed by generators with modulus 2” have short periods, as 
proved in [3]. Tests on the separate digits in the numbers have shown nonrandom 
behavior [14]. However, the implications of the short periods of the separate digits 
for the uniformity of the pseudorandom numbers was not reported. Marsaglia [8] 
has described a block structure, giving an effective period often considerably smaller 
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than the period of the loop. This block structure is a large structure in the sequence, 
inside which the regularities described here develop. The “waves” in [16] and the 
results in [17] concern n-tuples and have no direct relation to the results here. Previous 
correlation studies concern only very short range correlation, and have not detected 
the long-range fine structure. The uniformity tests applied to random number genera- 
tors have also failed, apparently since too few numbers [5,6] or unsuitable procedures 
have been used. 

2. RESULTS OF FREQUENCY TESTS 

The procedure used to test the uniformity of Generator 1 within fractions of the 
period is described here for one specific example (see Fig. la). A frequency test has 
been applied to each hundredth of the period (5 x lo4 numbers) using 104 classes 
(resolution 1O-4 in the numbers). The first 50 values of the resulting x2 values are 
identical with the last 50 values, since the effective period [8] is equal to 2.5 x 10s. 
Thus, only the values from the first effective period are used. The 50 x2 values are 
transformed to probabilities and plotted in a histogram. A final x2 test of this distribu- 
tion (Fig. la) against a random distribution gives a value of xr2, which shows that the 
distribution of x2 values from the uniformity tests is random with a probability 

a. 10m4 b. 1O-3 -2 
c. 10 d. IO-’ 

20- Resolution: -20 

l-l 

15- 
/I 

-15 

10 

5 

” 

-- ---- 

0 10 10 10 1 

P= 1.00 0.12 1.00 0.71 

S S R 

FIG. 1. Distributions of probability P (x2) values from frequency tests on Generator 1, using 
variable resolution (10-1-10-4) in the tests with the same sample size (1OP of period = 5 x 103, 
i.e., 50 tests in one effective period. p is the probability of finding a value of xe less than that found 
from the distribution in the figure, if the distribution was random. S indicates too smooth, R too 
rough distributions of pseudorandom numbers, with the same criterion as in Table I. 
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<0.0005. Thus, the pseudorandom numbers in this case do not behave like a truly 
random number sequence. 

In Fig. 1, a few more distributions of the same sample size but for different resolu- 
tions in the numbers are shown. In Fig. 2, the results of a larger number of tests are 
summarized. High test values, indicating nonrandom distributions of the numbers, 
as well as more normal values, are found. Too smooth or too rough distributions 
are also indicated in Fig. 2. 

I 

/ I Samole 

I I I I 
lo+ 1Ci3 10-2 16’ Resolution 

FIG. 2. Probabilities for randomness of the distributions in Fig. 1 and other similar distributions, 
as a function of resolution and fraction of period used in Generator 1. In the low left-hand comer 
the number in each class in the frequency test is too low for a simple xa test. In the top row xi3 tests 
have not been possible because of too few values of xp, but probabilities from a binomial distribution 
are given. For the other distributions, S and R indicate too smooth and too rough distributions of 
the pseudorandom numbers, using the same criterion as in Table I. 

3. DISCUSSION 

Figures 3 and 4 demonstrate a few remarkable features of Generator 1. 

1. A fine structure in the random number sequence (with period 5 x 106) exists, 
such that the differences Ak+,OO - Ak and Ak - AK--500 are identical, independent of 
location within the loop of the generator. 

2.1. A, mod 104 = A,-,,, mod 104. Thus, only 500 different values of AB 
mod lo4 exist in the entire loop, i.e., only a fraction 500/104 (loop length/M) of the 
possible values. 
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1 

61110000 

61110001 

38890000 

2222000, 

61110000 

83330001 

38*30000 

44440001 

~8,?BOOO,7 

5550001 

611iOOOO 

66660001 

'a390000 

27770001 

6l:looOO 

88880001 

.388900"0 

49990001 

3?990000 

11100001 

1003 1006009 

.93330000 3980000 

93331003 10996009 

-6670000 9990000 

86661003 20986009 

-66700** 9990000 

7999,003 30976009 

-6670000 P1.?0000 

73321003 40966009 

-6670000 8??00"0 

66651003 50956009 

-6670000 9980000 

59981003 60946009 

-6670000 898OP"i 

53311003 70936009 

-687"OOO 9990007 

46641003 80926009 

-667COOO B.J.QQ"OJ 

39971003 90916009 

-667C1700 - ? ,: 'I 2 0 ? 13 

33301003 906009 

9027027 54108081 

1.0970000 299100*0 

28997027 84018081 

19.970000 -70'39*000 

48967027 13928081 

19970000 29910000 

68937027 43838081 

2970000 29910000 

88907027 73748081 

-80030000 -70030000 

8877027 3658081 

I.4870000 29.91O"OO 

28847027 33568081 

7:iP70000 Z.9nlocOO 

48817027 63478081 

19.970000 29?I0000 

68787027 93388081 

1?3io*oo -70090000 

88757027 23298081 

-80030000 29910000 

8727027 5320808, 

FIG. 3. Numbers Ah from different parts of the first 1O-3 fraction of the loop of Generator 1, 
and differences A = Al, - Ak--SOO between them. In each row, numbers Ab up to Ak+4 are given. 
Note that, e.g., in the first column 61110000 = 10s - 38890000. 

2.2. The whole 5 x lo6 loop is generated by a group of 500 numbers by repeated 
addition of 500 different numbers with four trailing zeros. 

3. Complete uniformity of the digit 10% exists in a fraction of IOn-’ of the loop, 
y1 3 4. All digits IO”, IZ 3 5, are “pseudouniformly” distributed in a fraction of 
lo”-’ of the loop, m < ~1, due to the constant differences (Ak - A,-,,,,,). 

4. Each one of the small groups of 500 numbers does not have to be completely 
uniform, since the digit lo4 in (Al, - A,-,,,) never contains a factor of IO (never even 
or 5). 

The first result in (3) is related to a proof in [3, p. 121, which shows that Al, mod IO” 
has a period of IO” or less, since IO”, it < 7, is a factor of M. 

The results in Figs. 1 and 2 may be understood in the following way. The integers 
.&/lo4 are distributed too smoothly in fractions 1O-2 and 10-l of the loop, since several 
groups of the basic block of 500 numbers are studied and the digit loo in the integers 
is uniformly distributed in lO-3 of the loop. In the case of integers &/lo5 the basic 
block consists of 5000 numbers, which is lO-3 of the loop. Complete uniformity of the 
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Fraction No 0 1 2 3 4 

0 1 ,003 1006009 9027027 54108081 

A 21100003 d3SLlOCCU -100300 -scooco -.:03!l30 

1X1O-3 5coo 1,1oooc1 33301003 906009 8727027 532oso*1 

A i2IOOODD 32.3001917 -1"OOOO -3cooo3 -oocllcD 

2x10-3 10000 22200001 6GG01003 506009 8427027 52308081 

B 11:00000 33300360 -1OO"CO -.'CO"30 -?3COI"O 

3x10-3 1 soco 33300001 9990,003 706009 8127027 51408081 

h :1100000 -66703950 -100000 -;0:010 -33x00 

4x10-3 20000 44400001 33201003 GOGO 7827027 50508081 

n 1:100000 J,7:cocc* - i 0 2 0 0 i -BJUOD‘O -900000 

5x, o-3 25000 55500001 66501003 506009 7527027 49608081 

0 

7X10 
-2 

5OCOO 

25 

2x10 
-2 

100000 

3x10-2 150000 

h 

4x10-2 200000 

A 

5x7o-2 25CCOO 

* 

6X1 O-2 300000 

b 

7x1o-2 350000 

n 

8x10-2 400000 

A 

9x1 o-2 450000 

A 

1x10-1 5OOO"O 

1003 1006009 9027027 54108081 

J3ococco -iCiO~OO -,;0"0090 -3ooouco 

33001003 6009 602,027 45108081 

3,3000?0L1 1;:;1:02,103 -.:Jooooo -30000J0 

66001003 9900'5009 3027027 36108081 

S.1500300 -!cccoo:~ -~~OOVir? -00cc003 

99001003 98006009 27027 2710:!031 

-C7ODO330 -lo~;?,,oo 873?0003 -3ooilsoo 

32001003 97006009 97027027 18108081 

.72;oJ?s:j -1200000 -:uLi0000 4003300 

65CO1003 96006009 94027027 9108081 

32000333 -2000330 -'ocooco -JClOOD"O 

98001003 95006009 91027027 108081 

-87CO!lO30 -2OOCOOC -.jOOu"DUO 9I0!J0000 

31001003 94006009 88027027 91108081 

.35"3"003 -1"OOOO" -:03~~1000 -1~03OlJO 

64001003 93006009 85027027 82ioao8i 

.?3000000 -il"ocooo -.:"Di"OOO -9o~ocoo 

97001003 92006009 82021027 7310808, 

-67000000 -1000000 -3oooo"* -330000" 

30001003 91006009 79027027 64108081 

FIG. 4. Numbers Al, and differences Ak - A _ L 5000 (top) from the fkst 1O-2 fraction of the loop; 
numbers AI, and differences AI, - Aa-soooo (bottom) from the first tenth of the loop. See also Fig. 3. 
Note, that, e.g., Al, - Ak+,ooo = 10 x (Aa - AP--SUO) mod 10s. 

sW26/3-4 
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digit loo in this case is reached only in 1O-2 of the loop. No strict conclusion is possible 
in this case for a sample of 1O-3 of the loop, but too rough distributions are found. If 
still smaller fractions of the loop are used, which has been possible here for smaller 
resolutions (integers Ak/106 and A,/lO’), approximately random distributions are 
found. Thus, it is only in these cases that the expected pseudorandom nature of the 
number sequence is borne out. 

The results in Table I for Generator 1 can now be discussed. This case is much more 
complicated than the other tests described here. The sampling for each parameter 
was made in 1.7 x IO4 different locations in the sequence and employed in the mean 
3 x 1O-2 of the loop with a resolution of 10-l-5 x 10-2. Since numbers are sampled 
over the whole period or a large part of it, the results are expected to fall into the “too 
smooth” region in Fig. 2. As seen in Table I, this is generally correct. In the cases 
where neither too smooth nor too rough distributions have been found, the “distri- 
buted” sampling procedure has often given many tests with similar values of x2, thus 
the high probability limits in many such cases. 

The generators in [6], the generator used in [ll] and described in [9, IO], and the 
generator RANDU all have structures of the type described here, since the modulus is 
2” or 10”. Thus, they all must be used taking into account the restrictions in resolution 
and length of sequence. The method proposed in [9-l 11, choosing a new A, to avoid 
repetition, will not improve the sequence. All these generators have several loops. The 
mixed generator in [12] appears to have only one loop. However, the same structure 
will be found since the modulus is 235. 

4. CONCLUSIONS 

The results from the frequency tests show that for a resolution in the pseudorandom 
numbers of lo-” only a fraction of the period considerably smaller than IO-” must be 
used. The shuffling methods used to destroy the short-range order in random number 
sequences [3, 5, 181 do not appear promising for improving the randomness for larger 
fractions of the period, owing to the large amount of numbers that must be stored if 
the long-range pattern is to be destroyed. A “mixed” generator is believed to behave 
in the same way as the “multiplicative” type tested here (cf. [8, 131) even if the cor- 
responding pattern may be more difficult to find. An acceptable procedure is to 
choose a generator with a very long period and with many random digits in the 
numbers, i.e., with M large and with loop length as close to M as possible [3, IS]. 

It also appears necessary to choose it4 to be a prime [7, 19,201, to avoid all problems 
associated with short periods of the less significant digits. The more well behaved 
Generator 2 is of this type. However, testing of the final random quantities appears to 
be necessary in all critical applications. 

In Monte Carlo trajectory work, the use of generators with modulus prime, which 
are not expected to show any structure of the type reported here, does not seem to be 
common (no references were found). It is possible that the “rough” distributions 
sometimes found in the final distributions have been caused at least partly by poor 
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randomness in the initial values sampled. In our trajectory work [l], there were some 
indications in this direction, but because of the complex calculations, no strict con- 
clusion has been possible. The results of tests on the initial values for trajectory work 
collected in Table 1 demonstrate that even if the pseudorandom numbers are used in 
“short, independent bursts of fluctuating length” [IO] as in Monte Carlo trajectory 
work, the results may be sensitive to the detailed nature of the generator. Thus, careful 
statistical analysis of initial parameter values and a choice of generators with modulus 
prime [7], also in other respects well tested, are recommended for such work. 

APPENDIX: REALISTIC TESTS OF DISTRIBUTION SAMPLING 

The results from tests of sampled distributions of initial parameter values for a 
Monte Carlo trajectory study of chemical reactive scattering [l] are collected in 
Table I. Vibrational and rotational number distributions are omitted because of their 
special shape. The last distribution in the table was found by rejection sampling 
[4,9, lo], and required several random numbers for each parameter value. The values 
of x2 were found from comparison with the true distributions. Each value of xf2 used 
50 values of x2; each of those was computed from a sample of about 340 parameter 
values. Both high and low values of xf2 and the corresponding probabilities are 
suspect. The distributions of xr2 for all three runs of Generator 1 are clearly non- 
random, while the run of Generator 2 does not depart significantly from randomness. 
(Generator 2 is not expected to show a fine structure of the type described here; 
Table I shows only that it is possible to find random distributions in this test by a good 
choice of number sequence.) The very different behaviors of the cases using 
Generator 1, where two different resolutions (12 and 20 classes) have been employed, 
should be noted. 
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